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EXECUTIVE SUMMARY 

The Food Quality Protection Act of 1996 requires EPA to consider potential human 
health risks from all pathways of dietary and non-dietary exposures to more than one 
pesticide acting through a common mechanism of toxicity. In 2001, EPA established 
the N-methyl carbamate pesticides as a common mechanism group based on their 
structural characteristics and also similarity and shared ability to inhibit 
acetylcholinesterase (AChE) by carbamylation of the serine hydroxyl group located in 
the active site of the enzyme. EPA has not determined what method or methods will be 
used to estimate cumulative risk for this common mechanism group. 

EPA is in the early stages of developing a strategy for incorporating physiologically-
based pharmacokinetic/pharmacodynamic (PBPK/PD) models into its cumulative risk 
assessments. PBPK/PD models are very powerful tools that can account for anatomic 
structure and physiological and biochemical processes. They can be used to estimate 
internal exposure dose or concentrations of parent compounds and/or active 
metabolites at the target site(s) and also toxicologically relevant effects. Typically, 
inhibition of AChE is fairly rapid (within hours) for members of the N-methyl carbamate 
common mechanism group. The time dependant relationship between exposure and 
effect for this group make the N-methyl carbamates a good case study to aid the 
Agency in developing its strategy for using PBPK/PD models in cumulative risk 
assessments. 

The following document provides the preliminary model structure for two separate 
PBPK/PD models being developed in addition to the biological basis for their structure. 
These models are being developed in separate programming languages (ACSL and 
MCSim). Six simulations using are provided that show types of relevant output that can 
be generated by PBPK/PD models. Theses simulations include results for in silico 
experiments for a single chemical at starting values; a single chemical with adjustments 
to the AChE regeneration rate and gastrointestinal parameters; two exposures to a 
single chemical separated by either 1 hour or 4 hours; and one exposure each to two 
different chemicals 4 hours apart. Development of PBPK/PD models are resource and 
data intensive. This document details types of in vivo and in vitro data that are 
desirable for development and evaluation of PBPK/PD models for individual N-methyl 
carbamates and also the cumulative assessment group as a whole. The critical steps 
(defining the model purpose; biological characterization; mathematical description, 
computer implementation, and parameter analysis and quality of model fit) in evaluating 
the quality of PBPK/PD models are also discussed. 

The current document is considered a research effort that is a work-in-progress; model 
development is still on-going. The level of refinement afforded during the model 
development and evaluation phases will be directly related to the amount of relevant 
and appropriate pharmacokinetic and pharmacodynamic data available. EPA expects 
further scientific review in the future as the case study develops further and as the 
strategy for incorporating PBPK/PD models in cumulative risk assessments matures. 
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LIST OF ABBREVIATIONS 

AChE Acetylcholinesterase

AUC Area under the curve

CAG Cumulative assessment group

FIFRA Federal Insecticide, Fungicide, and Rodenticide Act

FQPA Food Quality Protection Act

GI Gastro-intestinal

LOAEL Lowest-Observed-Adverse-Effect Level

NHEERL National Health and Environmental Effects Laboratory

NERL National Exposure Research Lab

NOAEL No-Observed-Adverse-Effect Level

OP Organophosphate pesticide

OPP Office of Pesticide Programs

ORD Office of Research and Development

PBPK Physiologically-based pharmacokinetic (typically refers to models)

PBPK/PD Physiologically-based pharmacokinetic/pharmacodynamic (typically


refers to models) 
PD Pharmacodynamic 
PK Pharmacokinetic 
RBC Red blood cells 
SAP Scientific Advisory Panel 
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I. BACKGROUND AND SCOPE 

In 1996, passage of the Food Quality Protection Act (FQPA) imposed upon the 
Office of Pesticide Programs (OPP) the requirement to consider potential human health 
risks from all pathways of dietary and non-dietary exposures to more than one pesticide 
acting through a common mechanism of toxicity. At each step in the development of its 
cumulative risk assessment guidance and methodology, OPP has solicited scientific 
peer review. Specifically, the FIFRA Scientific Advisory Panel (SAP) has reviewed 
OPP’s Cumulative Guidance (FIFRA SAP 1999, 2000) and the many aspects of the 
cumulative risk assessment for the organophosphates pesticides (OPs; see USEPA, 
2002a). The Cumulative Guidance (USEPA, 2002a) describes several methods which 
could be used for performing cumulative hazard assessment. Some of these include 
use of effect levels from toxicology studies [e.g., no-observed-adverse-effect (NOAELs) 
and/or lowest-observed-adverse-effect levels (LOAELs)]; benchmark dose modeling 
(USEPA, 2000b); and also physiologically-based pharmacokinetic/pharmacodynamic 
models (PBPK/PD). Each of these methods are considered reasonable approaches to 
doing cumulative hazard assessment. As discussed in the Cumulative Guidance 
(USEPA, 2002a), the level of refinement for each cumulative risk assessment will be 
depend on several factors, included among these is the availability of adequate and 
appropriate data for the particular common mechanism group of interest. The FIFRA 
SAP has previously encouraged OPP to consider using PBPK models (FIFRA SAP 
2001, 2002) in developing cumulative risk assessments. EPA is currently developing a 
draft strategy for utilizing pharmacokinetic data in cumulative risk assessments. As part 
of this draft strategy, a collaborative research effort is underway at EPA’s National 
Health and Environmental Effects Laboratory (NHEERL) and National Exposure 
Research Lab (NERL) along with Rory Conolly of the CIIT Centers for Health Research 
to develop a case study using PBPK modeling for multiple pesticides with a common 
mechanism of action. This case study is being developing with the N-methyl carbamate 
pesticides. 

In 2001, EPA established the N-methyl carbamate pesticides as a common 
mechanism group based on their structural characteristics and also similarity and 
shared ability to inhibit acetylcholinesterase (AChE) by carbamylation of the serine 
hydroxyl group located in the active site of the enzyme (USEPA, 2001b). The N-methyl 
carbamate pesticides are, therefore, subject to cumulative risk estimation under the 
FQPA (1996). OPP is in the early stages of developing its cumulative risk assessment 
of this common mechanism group and expects to have a preliminary cumulative risk 
assessment for the relevant AChE-inhibiting members of this class to be available to the 
public by spring of 2005. The AChE inhibitory effects of N-methyl carbamates is 
reversible generally within hours--although the time to recovery is chemical-dependent. 
The time course of effects can be very complicated for multi chemical risk assessments 
when the time to effect and/or the time to recovery varies substantially among 
chemicals. OPP has not yet determined the method or methods it will use to estimate 
the cumulative risk to this common mechanism group. Consistent with past practice for 
single chemical assessments and the principles outlined in the Cumulative Guidance, 
OPP may first perform a screening level assessment to evaluate those pesticides and 
exposure scenarios which may or may not be likely to contribute to the cumulative risk 
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prior to development of a more refined assessment for the contributing pesticides and/or 
exposure scenarios. OPP acknowledges that consideration of the pharmacokinetics 
and pharmacodynamics of AChE inhibition at the target site(s) and time to recovery are 
important factors in developing the preliminary cumulative risk assessment for the N-
methyl carbamate pesticides. 

As discussed below, PBPK and physiological based pharmacodynamic (PBPD) 
models offer great advantages in risk assessment, such as the ability to incorporate 
pharmacokinetic and mechanistic information, to consider the assumptions of dose-
additivity, and to evaluate intra- and inter-species extrapolation. There are, however, 
practical implications and considerations in a regulatory setting such as the availability 
of appropriate data for developing and evaluating the model and also quality 
assurance/quality control. The Agency is currently drafting a strategy for utilizing 
pharmacokinetic data and PBPK/PD models in cumulative risk assessments. The 
purpose of the current SAP review is to consider the on-going case study for N-methyl 
carbamate pesticides to aid the Agency in the development of this draft strategy. 

The current evaluation considers both conceptual and technical aspects of 
performing cumulative risk assessment using a PBPK/PD model. The ability to directly 
consider mechanistic information, such as time to recovery data, is highlighted. The 
case study includes model simulations for two theoretical chemicals with toxicological 
and physical-chemical properties consistent with those for N-methyl carbamate 
pesticides. The current document does not consider actual exposure scenarios or 
estimate cumulative risk. The PBPK/PD models described in this document are still 
under development. Parameter estimation and sensitivity analysis are not discussed 
here. This document also does not consider the application of uncertainty factors or the 
application of the FQPA 10X Factor for infants and children. This document does, 
however, consider possible ways of incorporating exposure information and considers 
types of relevant information that could be output from a PBPK/PD model. 

Page 4 of 50 



II. INTRODUCTION 

Pharmacokinetic models range from simple empirically based models that 
describe observed data to more complex PBPK models that can be used to predict 
outcomes and extrapolate from one set of exposure conditions to another based upon 
an understanding of the underlying biology. A PBPK model is a quantitative description 
(typically with differential equations) of the biological structures and processes that 
control pharmacokinetic (PK) behavior in an organism (i.e, the effect of the body on the 
absorption, distribution, metabolism, and excretion of a chemical). PBPK modeling 
differs from classical compartmental PK modeling in this focus on the biological 
determinants of PK behavior. PBPK models simulate the events between the external 
dose and the internal exposure of the chemical to a target site. PBPD models address 
the events from the internal dose at the target site to the response observed (i.e., the 
effects of the chemical on the body), e.g., inhibition of AChE. PBPK/PD models are 
used to establish a linkage between PK behavior and the toxicological or biological 
effect of a chemical on the body, such as inhibition of AChE. Thus, while classical 
empirical modeling is useful for interpolation between data points, a well developed 
PBPK/PD model can be used to simulate toxicological outcomes for a variety of different 
exposure conditions (e.g., different test species, exposure routes, chemical 
concentrations, or metabolizing capacity). 

PBPK/PD models have the potential to consider internal exposure concentrations 
at the site(s) of action for a single chemical and its toxicologically active metabolite(s) 
and/or multiple chemicals and their respective metabolites. Dose additivity is EPA's 
default assumption when evaluating the joint risk of chemicals that are toxicologically 
similar and act at the same target site (USEPA, 2001a). In cases where multiple 
chemical species are considered in the PBPK/PD modeling, the impact of possible 
additive or non-additive interactions between the different chemical species can be 
described. For example, sites of biotransformation and/or binding to enzymes can be 
described. Specifically, the PBPK/PD models can provide time course quantitative 
outputs of concentration, amount, or changes in endogenous enzymes and thus the 
models can track the PK behavior and pharmacodynamic (PD) outcome of mixtures. 

Consideration of how the biology described in the model changes with age, sex, 
species and/or other factors can guide development of these models. Development and 
use of these models requires knowledge of organism specific and chemical specific 
biologic processes. An understanding of the parameters that govern the 
pharmacokinetics is also necessary. Proper development and use of these models 
often requires examination of existing data, model formulation and testing leading to 
more specific data requirements, which in turn leads to model refinement. These 
capabilities allow PBPK/PD models to serve two somewhat different roles. First, the 
models can play key roles in the laboratory study of pharmacokinetics and mechanism 
of action. This role of PBPK/PD models is particularly powerful when model 
development and laboratory experiment are conducted in an iterative, mutually 
supportive manner. Models help identify key data which are lacking, elucidate important 
events in the chain leading to toxicity, and also identify and quantify the uncertainty. For 
example, PBPK/PD models may inform us about nonlinearities in high to low dose 
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extrapolation and about interspecies scaling factors that would not have been apparent 
without a quantitative, mechanistic perspective. 

A second role of PBPK/PD models is in the development of risk assessments. 
PBPK/PD models developed from an adequate supporting database that have been 
tested and evaluated, and also demonstrate reasonable ability to predict the behavior of 
datasets not used during model development, can be used for partial or complete 
replacement of the default assumptions used in risk assessment (e.g.,inter- and intra­
species extrapolation factors or route-to-route extrapolation). EPA has previously used 
PBPK models to estimate the toxicologically relevant dose for dichloromethane 
(USEPA, 1995; Anderson et al, 1987) and vinyl chloride (USEPA, 2000c; Clewell et al, 
1995a, b). 

The capacity of PBPK/PD models to explicitly consider mechanistic data, to 
estimate exposure concentrations at the site(s) of action, and to describe the 
pharmacokinetic behavior of mixtures motivate EPA’s interest in this type of modeling 
and specifically in the development of a case study with the N-methyl carbamate 
pesticides. As stated above, the Agency is developing a draft strategy for utilizing 
PBPK/PD models in cumulative risk assessments.  A more detailed description of this 
strategy will be provided at a later date following consideration of the comments from 
the SAP and further progress has been made on the case study. 
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III. CASE STUDY: N-METHYL CARBAMATE PESTICIDES 

A. Cumulative risk assessment and PBPK/PD models 

Based on the risk assessment paradigm described by the National 
Research Council (1983, 1994), risk is made up of exposure and hazard 
components. The discrepancy between actual and predicted risk is minimized to 
the extent that these two factors are well-characterized. This minimization 
serves the public health by providing the soundest possible guidance for setting 
exposure standards. Society as a whole is in turn well served when the 
stringency of exposure standards is aligned as closely as possible with the actual 
magnitude of the health risk. This alignment helps to ensure the efficient 
allocation of scarce resources. In contrast, risk assessments based largely on 
default assumptions, while expected to be health-protective, provide little 
assurance that exposure standard stringency and the actual magnitude of the 
health risk are well aligned with each other. 

In the specific case of cumulative risk assessment for the N-methyl 
carbamate pesticides, AChE inhibition is considered to be the toxicologically 
relevant regulatory endpoint. No PBPK or PBPD models for N-methyl 
carbamates have been published to date (October, 2003). Such models have 
been described for several OPs that describe the inhibition of AChE (Gearhart et 
al, 1990 and 1994, Timchalk et al, 2002). The OP models describe the key 
anatomical, physiological, and biochemical factors that control OP 
pharmacokinetics and the transport of the AChE-inhibiting chemical to AChE. 
These models thus describe the PK mechanisms of OPs as well as the inhibition 
and regeneration of AChE. The existence of PBPK/PD models for OPs have 
facilitated the development of the preliminary model for N-methyl carbamates. 
For the on-going case study, eventually, PBPK/PD models will be prepared for 
individual N-methyl carbamate pesticides and then linked together to predict 
AChE inhibition following exposure to multiple N-methyl carbamate pesticides. 

Both time-course and dose-response behaviors for AChE inhibition can be 
tracked by PBPK/PD models with arguably greater confidence than is possible 
with empirical models that do not incorporate the physiological and mechanistic 
detail that characterize PBPK/PD models or with default approaches which do 
not consider any chemical or exposure specific data or information. When used 
for risk assessment purposes, this increased confidence in model-generated 
predictions compared to empirically-based and/or default-based approaches 
relates to a reduction in the overall uncertainty about risk estimates. These 
models thus serve the goal of moving towards more accurate prediction of risk 
without any relaxation of concern for protection of the public health. 

It should be recognized that PBPK/PD modeling in support of cumulative 
risk assessment for N-methyl carbamates can be expected to reduce but not to 
eliminate uncertainty. PBPK/PD model structures and parameter values have 
associated degrees of uncertainty some of which cannot be readily eliminated. A 
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key consideration in the overall evaluation of this exercise will thus be the degree 
to which PBPK/PD modeling increases confidence in the final assessment 
relative to the confidence that would be obtained with a less sophisticated 
approach. 

The present document considers preliminary work on the methods for 
estimating exposure at the site(s) of action and subsequent AChE inhibition for 
the N-methyl carbamate pesticides . This document does not consider relevant 
environmental exposure scenarios from food, water, and/or residential and non-
occupational settings. It should, however, be noted that a well-developed 
PBPK/PD model is sufficiently flexible to consider various types and 
combinations of exposure and co-exposure scenarios appropriately separated in 
time. These models should also be sufficiently flexible to consider discreet 
exposure scenarios for a single person or distributions of exposures for many 
people. OPP is still actively considering which method or methods are most 
appropriate for use in estimating the cumulative risk for these pesticides. The 
degree to which OPP considers results from the PBPK/PD modeling effort will 
depend, in part, on the availability of appropriate PK and PD data but also on the 
resources required to perform computer simulations for specific exposure 
scenarios. 

B.	 Preliminary pharmacodynamic description of acetylcholinesterase 
inhibition by N-methyl carbamate pesticides 

EPA established the N-methyl carbamate pesticides as a common 
mechanism group based on their structural characteristics and also similarity and 
shared ability to inhibit AChE by carbamylation of the serine hydroxyl group 
located in the active site of the enzyme (USEPA, 2001b). This inhibition results 
in accumulation of acetylcholine at a nerve synapse or neuromuscular junction. 
This inhibition can result from interaction between the parent N-methyl 
carbamate pesticide or AChE-inhibiting metabolites with the enzyme, AChE. 
Continued accumulation of the neurotransmitter acetylcholine may result in the 
overstimulation of cholinergic pathways in the central and peripheral nervous 
systems and possibly to the expression of cholinergic signs and symptoms such 
as nausea, gastrointestinal distress, vomiting, tremors, paralysis and depression 
of respiratory function. 

Generally, AChE-inhibiting chemicals compete with the acetylcholine for 
binding to the enzyme (AChE). As more AChE-inhibiting chemical binds with the 
enzyme, the acetylcholine is subject to slower or less hydrolysis and its activity 
is prolonged. The following outlines the basic process of AChE-inhibition for a 
single N-methyl carbamate pesticide. 

1.	 There is a certain amount of AChE in each tissue and a certain amount is 
synthesized to keep this level at a near physiological steady-state (Ks). 
This is a basic physiological process independent of any foreign chemicals 
entering the system. 
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2.	 A certain amount of enzyme is degraded (Kd). This also reduces the 
amount of free enzyme available to perform its normal physiological 
function. When no inhibitor is present this degradation process is 
balanced by the synthesis described above. However in the presence of 
inhibitor the formation of the complex can be thought of as another stress 
that reduces the amount of enzyme available for normal physiological 
function. This reduces the activity of the enzyme on its normal 
physiological substrate, acetylcholine at the neurologic site. 

3.	 Inhibitors, such as the N-methyl carbamates, enter the system and reduce 
the amount of free enzyme by forming a complex with the enzyme. The 
enzyme that is complexed with the AChE-inhibiting chemical is no longer 
available to perform its normal physiological activity leading to the build up 
of acetylcholine. (Each N-methyl carbamate pesticide has a unique rate 
constant for the formation of the complex with the enzyme, Ki). 

4.	 The enzyme-inhibitor complex in turn reacts to result in a break down of 
the AChE-inhibiting chemical and a return or regeneration of free enzyme. 
This process is also governed by a chemical specific rate constant, Kr. The 
period of inhibition varies for different compounds and is generally 
dependent upon the rate of regeneration. Because the period of inhibition 
is often brief (due to rapid regeneration) the whole process has been 
dubbed as ‘reversible’. 

Figure 1 summarizes this process. The “released metabolite” in Figure 1 
represents the N-methyl carbamate that is broken down. Note that each 
carbamate has its own specific rate constants for the process. Any number of N-
methyl carbamates can interact at same time or at any time with the free AChE. 
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Figure 1. Schematic diagram of N-methyl carbamates binding to AChE. 

Where:

Acex is the amount of AChE (:mol) in compartment x

INcexj is the amount (:mol) complex of AChE and inhibitor j in compartment x

Ks is zero-order rate of enzyme synthesis

Kd is the first-order rate of enzyme degradation (hr-1)

Kij is the bimolecular rate of inhibition for jth inhibitor

Krj is the first-order rate of regeneration for jth complex

Carbamate N is AChE active chemical, parent compound or metabolite

Released metabolite is a Non-AChE active metabolite
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The following differential equations represent the mass balance for the 
Figure 1. 

x 
s d Ij jx rj j 

j 

xj 
x j jx rj j 

dAce K ce K K C K INce
dt 
dINce 

Ace K C K INce
dt 

 
= × + × + × 

 

= × − × 

∑ Equation 1 

Equation 2 

Where: 
Acex is the amount of AChE (:mol) in compartment x 
INcexj is the amount (:mol) complex of AChE and inhibitor j in compartment x 
Ks is zero-order rate of enzyme synthesis 
Kd is the first-order rate of enzyme degradation (hr-1) 
KIj is the bimolecular rate of inhibition for jth inhibitor 
Krj is the first-order rate of regeneration for jth complex 
subscript x indicates tissue compartment, 
subscript j indicates the identity of the inhibiting chemical 

x 
j 

I

A
 

−  
 

× 

∑

Thus, the total amount of active enzyme is equal to the amount present in 
the system minus the amount degraded minus the amount forming a complex 
with the inhibitor plus the amount regenerated after the enzyme breaks down or 
metabolizes the inhibitor. 

Cumulative risk assessments consider risk from multiple pesticides. 
Therefore, the PD component of the PBPK/PD model needs to include the 
capacity to consider potential mixture effects. More than one compound can act 
in combination at any of the steps outlined above. The simplest interaction would 
be simply adding the inhibition caused by each compound. In such cases, 
depending, upon the specific rate constants, different chemical molecules would 
each contribute to enzyme inhibition. It might be possible however that 
interaction would involve competition between the various chemicals for binding 
with the enzyme. If data suggest that interactions between the N-methyl 
carbamates other than dose-additive ones are observed, these can and will be 
included in the modeling efforts. 

C.	 Preliminary pharmacokinetic description of N-methyl carbamate 
pesticides 

As described in previous sections, PBPK models describe the disposition 
of the foreign chemical throughout the body and within the tissues. For purposes 
of this assessment the N-methyl carbamates are modeled as being 
predominately metabolized in the liver with secondary metabolic sites in the 
kidney and brain compartments. 
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Parameters for PBPK models include three distinct types of data: 
physiological, chemical-specific, and parameters for determining the stochastic 
behavior of model. The physiological data are independent of the chemical being 
modeled and refer to such things as organ volumes and blood flows. Some 
chemical-specific parameters are partition coefficients, metabolic rate constants, 
and coefficients for protein binding. Parameters for determining the stochastic 
behavior of model, such as inter-individual variances, are discussed below in 
Sections III.G and III.H. 

The specific compartments considered in the modeling are selected based 
on information available for exposure, toxicology, and metabolic profile to a 
particular chemical and potential active metabolites. Distribution within, between 
and among organs, tissues, and fluid is modeled according to compartmental 
volumes, blood flow rates, and blood tissue partitioning. The body volume is 
determined for each animal species, based on sex and age. The compartment 
volumes are then calculated as a percentage of the body volume. Generally, 
each model has equations to explicitly describe the arterial and venous blood, the 
lung, the liver, and kidney. Other organs are lumped together within two 
compartments referred to as rapidly and slowly perfused tissues. Organs of 
toxicological interest such as neurologic organs are also included as explicit 
organs (explicit means that the organ has its own equations and is not included 
in one of the lumped compartments). All of the flows of the compartments 
(organs) must add up to 100% of the cardiac output. Table 1 provides selected 
organs and necessary governing parameters for the N-methyl carbamate model. 
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Table 1. Selected organs and parameters relevant for PBPK modeling for the N-methyl 
carbamate pesticides 

Organs Parameters 

Arterial and Venous Blood cardiac output, arterial blood volume, venous 
blood volume, binding constants; cholinesterase 
levels, rate constants for interaction with 
cholinesterase 

Liver liver volume, tissue to blood partition coefficients 
for all chemicals (parents and metabolites) 
metabolism rate constants; cholinesterase levels, 
rate constants for interaction with cholinesterase 

Stomach and intestine absorption parameters 

Kidney kidney volume, tissue to blood partition 
coefficients for all chemicals (parents and 
metabolites) metabolism rate constants 

Brain brain volume, tissue to blood partition coefficients 
for all chemicals (parents and metabolites) 
metabolism rate constants; cholinesterase levels, 
rate constants for interaction with cholinesterase 

Rapidly and Slowly perfused tissues organ volume, tissue to blood partition coefficients 
for all chemicals (parents and metabolites) 

Lung respiratory rate, tissue to blood partition 
coefficients for all chemicals (parents and 
metabolites) and where appropriate, blood to air 
partition coefficients 

Appropriate tissues Equilibrium binding constants for binding to 
proteins, etc. 

Absorption involves entry of a drug or chemical into the body. A chemical 
may enter directly into the gastro-intestinal (GI) tract via gastric gavage, from 
ingestion of food, or from “non-dietary” ingestion. The basic GI model has a 
stomach and intestine that are simulated with rate and bolus ingestion into the 
stomach, flow from the stomach to the intestine and from the intestine to 
intestinal elimination. In addition there is flow from the stomach and the intestine 
to the liver via portal blood. There is no bile flow from the liver to the intestine 
and no lymph flow or pool. Systemic arterial blood and portal venous blood are 
input into the liver. Mathematical expressions used to describe absorption into 
the GI tract are presented in Equation 3. 
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The stomach has the jth chemical input by bolus ingestion (a plug of food 
or drink) and rate ingestion (food or drink input over time), with chemical output to 
the liver via portal blood and to the intestine. The equation for the rate of change 
of the jth chemical in the stomach is: 

dA 

dt 

dA 

dt 

dA 

dt 
K K A

ST BIG RIG 

ABS ST PB ST ST IN ST 

j j 

j j 
= − − , , ,Equation 3 

Where: 
Ast is the amount of chemical in the stomach 
ABig is the amount of chemical resulting from a bolus ingestion 
Arig is the amount of chemical resulting from a “rate” ingestion (gradual over time rather than a bolus) 
Kabs, St,PB is the rate constant for absorption from the stomach into the portal blood 
Kst, in is the rate constant for transfer from stomach to intestine 

A 
j 

j j 
+ , 

The rate of change of the jth chemical in the intestine is given by the rate 
of input from the stomach to the intestine and the rate of output to the liver via 
portal blood, and to the feces. The equation is: 

dA 

dt 
K K A K A

IN 

ST IN ST ABS IN PB IN IN FEC IN 

j 

j j j j j 
= − , , , 

Equation 4 

Where: 
Ast, Kst, in are as previously defined 
Ain is the amount of chemical in the intestine 
Kabs,in pb is the rate constant for absorption from the intestine into the portal blood 
Kin, FEC is the rate constant for fecal elimination 

A 
j 

− , 
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The most commonly used PBPK models assume each organ to be 
homogenous and thus the fluid contained in the vascular, interstitial or 
extracellular, and the intracellular regions are all combined into one. This implies 
that the transfer of a chemical across the membrane, i.e., capillary wall and cell 
membrane, is very rapid compared to the tissue perfusion rate. Under this 
condition, the permeability across the membrane is assumed to be very large. 
Therefore, the slowest or rate-limiting step in the process of drug distribution 
must be its delivery by the circulatory flow. The typical mass balance differential 
equation describing this is: 

Equation 5 

dAj,i/dt = Vi dCj,i/dt = (Qi(Cj,a - Cj,vi) - dMj,i/dt) 

where:

Aj,i is the amount of the jth chemical in the ith organ

Cj,i is the concentration of jth chemical in the ith organ

t is time

Qi is the arterial blood flow to the ith organ

Cj,a is the concentration of jth chemical in the arterial blood

Cj,vi is the concentration of the jth chemical in the venous blood leaving the ith organ

dMj,i/dt is the rate of metabolism of the jth chemical in the ith organ

Vi is the volume of the ith organ


Essentially, this equation describes the transport and metabolic transformation of 
the chemical into and within the tissue. Under the assumptions of a well-stirred 
compartment, the instantaneous concentration of a substance in a tissue or 
organ is the difference between the concentration entering the organ and that 
leaving the organ adjusted by any metabolic processes also eliminating the 
chemical. 

Under the assumed conditions that the organ is homogenous or well-
stirred the venous blood leaving the organ is in equilibrium with the organ as 
described by: 

Equation 6 
Cj,i/Cj,vi = Rj,i 

Rj,i is referred to as the tissue to blood partition coefficient. This value, 
determined from a variety of computational and laboratory methods, is governed 
by a number of thermodynamic properties of the chemical and the tissue of the 
organ. In the simplest cases it represents a ratio of solubilities of the chemical in 
the tissue to blood. The above equation then is transformed to: 
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Equation 7 
dAj,i/dt = Vi dCj,i/dt = (Qi(Cj,a - Cj,i/Rj,i) - dMj,i/dt) 

The integral of the above equation results in the concentration at time, t. 

The expression for metabolism can take any number of forms including 
Michaelis-Menten, first order, or second order. For the case of the N-methyl 
carbamates Michaelis-Menten and first order kinetics are employed for the 
various metabolic processes. Equations such as the ones above are also written 
and employed for each of the metabolites of the jth chemical. Further, in the 
appropriate tissues, the equation also include the metabolic terms to account for 
the transformation of the chemical caused by the cholinesterases (this has been 
described in previous sections). 

The liver is described with similar equations with terms that account for 
absorption from the stomach and intestine as described previously. Other 
organs such as the skin and lung also have input terms as appropriate. 

For purposes of the N-methyl carbamate pesticides, the model must 
represent multiple chemicals in some combination and even with simultaneous 
exposure. The power of PBPK/PD models is in the ability to use it to represent 
the biologic and physical process that go on within the body. Because the model 
mathematically describes the physical, chemical, and physiological processes it 
can be configured to account for the affect of multiple chemical exposure. 

D. Computer implementation 

The general modeling strategy described above will be implemented in 
two separate modeling efforts, implemented in different languages. This activity 
provides a quality control check on the modeling software and the coding of the 
model, in that outputs of the two models given the same input should be similar. 
Divergence of the two model outputs would indicate improper coding in at least 
one of the models. Since two languages are being used that differ in syntax and 
how the model code is structured, it is unlikely that a coding error would be made 
similar enough in both programs that it would go undetected (i.e., both program 
outputs would be the same). Moreover, the capabilities of the two modeling 
languages differ, and there are features unique to each program that add to the 
overall ability to develop and test the model. 

The descriptions of the two models follows: 
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1.	 Model 1: Use of Exposure Related Dose Estimating Model 
(ERDEM) 

EPA’s NERL has developed the Exposure Related Dose Estimating Model 
(ERDEM) as a platform for the application of PBPK and PBPK/PD models. 
The heart of ERDEM (USEPA, 2002c) is a PBPK model that simulates the 
absorption, distribution, metabolism, and elimination of chemicals in 
mammalian systems. 

Simulated chemicals are introduced into the physiological system by any 
of several routes including injection, ingestion, inhalation, and/or dermal 
absorption. The ERDEM system is contains a large set of potential 
compartments and processes, with over 30 physiological compartments 
such as arterial and venous blood, brain, skin (surface and dermis), fat, 
intestine, kidney, liver, rapidly and slowly perfused tissues, lung, stomach, 
and intestine. Any given model is derived by selecting those 
compartments and processes that are most applicable to the kinetics of 
the chemical(s) and endpoint of interest. Figure 2 is a diagrammatic 
depiction of the pharmacokinetic model that was developed for the N-
methyl carbamates. 

ERDEM is programmed in the Advanced Continuous Simulation Language 
(ACSL). Model specific parameter values are entered into ERDEM based 
upon the physiological, biological, and biochemical modeling data specific 
to the chemical and/or scenario of interest (USEPA, 2002c). Any PBPK 
model, including ERDEM, is made up of a series of the differential 
equations which describe the rates of inflow, distribution, metabolism, or 
outflow of a chemical and various metabolites in each separate biological 
compartment. For the application of cholinesterase inhibiting compounds 
such as the N-methylcarbamates, ERDEM has been expanded to include 
a PD component. This PD component is designed to describe the effect 
of these compounds on the cholinesterase enzymes as described in the 
previous section. 

ERDEM consists of the following: An ACSL-based model engine and a 
Power Builder Front End. Both of these components will be made 
available to the public as executables from EPA's Office of Research and 
Development (ORD)-NERL. However at present time the front end has 
not been updated to include simulations for AChE-inhibiting chemicals. An 
executable ACSL command file that includes the AChE inhibition 
component can be provided to interested individuals or groups by EPA's 
ORD-NERL. The user is advised to run the model using ACSL command 
files rather than a front end. No special software is required by the user. 
An ACSL software license is only needed to recompile the code and 
cannot be provided by EPA. However ERDEM should require no 
additional recompilation of code to run the model as described in the 
document. 
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Inputs 

IN  Intestine 

LV  Liver 

CR Carcass 

KD  Kidney 

FT Fat 

SL Slowly Perfused 

RP Rapidly Perfused 

DR Derma 

VB  Venous 

ST Stomach Intestinal 
Elimination 

Bolus Dose 
Ingestions 

Rate 
Ingestions 

Intraperitoneal 
Injection 

Kidney Metabolites 

Kidney 
Elimination 

Intramuscular 
injection 

Skin Surface Water 

Bolus Dose 
Injections 

Infusions 

Portal Blood 

Liver Metabolites 

QBCR 

QBLV 

QBKD 

QBFT 

QBSL 

QBRP 

QBDR 

Carcass Metabolites 

KST,IN KIN,FEC 

KIN,PBKST,PB 

Fat Metabolites 

Slowly 
Perfused 
Tissue 
Metabolites 

There are up to K metabolites 
of each of the N chemicals. Each 
metabolite is one of the 
N chemicals. here is binding in 

the Arterial Blood and Venous Blood. 

BR  Brain 

QBBR 

SP Spleen 0.000.00 Spleen Metabolites 

QBsp 

Rapidly Perfused 
Tissue Metabolites 

Brain 
Metabolites 

AB  Arterial 

Open Chamber 
Inhalation 

Open Chamber 
Exhalation 

CC  Closed 
Chamber InhalationPU Static Lung 

Lung Metabolites 

QA 

QB 

There are N chemicals modeled. 
Liver, Kidney, Fat, Carcass, 
Brain, Slowly Perfused, Rapidly 
Perfused Tissue and Spleen. 
The Static Lung, and Lung Tissue 
are modeled with binding, 
elimination, and metabolism. 

T

Figure 2. Schematic diagram of PBPK model for N  chemicals in ERDEM. 
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2. Model 2: PBPK development using MCSim Language 

A second model is being developed in the MCSim language. Figure 3 
shows a schematic of part of that model, for a single N-methyl carbamate 
that has two active metabolites. MCSim is an open-source statistical 
modeling package initially developed by Frederick Bois for the application 
of modern Monte Carlo statistical methods in complex nonlinear models. 
Since MCSim includes a sublanguage for describing dynamic models in 
terms of their component differential equations and typical time-varying 
inputs, it has been particularly valuable in the application of Markov chain 
Monte Carlo (MCMC) methods to estimating Bayesian posterior 
distributions for parameters of PBPK/PD models. 

Dynamic models in MCSim are written in an algebraic language. Model 
specification includes predefining all the parameters for the model, 
declaring all the variables whose dynamics are governed by differential 
equations, declaring all the variables whose values need to be output, 
specifying input variables whose values will be determined by special 
functions that provide for periodic or episodic inputs, as well as the 
differential equations for the model. This model specification file is 
translated by the MCSim software into the C programming language, and 
then compiled and linked to libraries that provide routines for integrating 
the differential equation system, carrying out the required Monte Carlo 
simulations (USEPA, 1996 and 1997), and doing the input and output 
functions. The resulting executable file is then run with specially formatted 
input files that can change parameter values and specify the nature of the 
desired simulation, whether it is a numerical integration of the differential 
equation system, a Monte Carlo simulation of parameter variability or 
uncertainty, or a MCMC estimate of Bayesian posterior distributions for 
model parameters. 

MCSim models are portable at several levels. At the lowest level, since 
MCSim itself is open-source, unlike ACSL, and since open source c-
language compilers are available for almost all computing platforms (e.g., 
UNIX, Microsoft Windows, and Apple OS-X), models can be distributed as 
model source, and recompiled and run with little additional cost on the part 
of reviewers. Compiled models are also executable files, and can be run 
without any additional software (though the executables are specific to 
particular operating systems and computing hardware). Thus, the 
compiled models can be distributed and their behavior evaluated without 
the installation of additional software. 

At the present time, the MCSim is still under development. As the case 
study for the N-methyl carbamates is developed further, the computer 
code will be provided to the public at a later date. 
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Figure 3. Schematic diagram of PBPK model for a single N-methyl carbamate with two 
active metabolites in MCSim. (Red coded compartments contain terms for AChE 
inhibition.) 
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E. Types of output from by PBPK/PD models 

As described above PBPK/PD models are very powerful tools that can 
help account for anatomic structure and physiological and biochemical 
processes. They can be used to evaluate the disposition of the chemicals and 
their metabolite in the body and any relevant PD outcome(s). The types and 
formats of the output from PBPK/PD models can vary and should be related and 
defined by the purpose of the model. Below provides a list of possible output that 
may be relevant to examining the N-methyl carbamate pesticides. Each of the 
different examples provide information about single or multiple pesticide 
exposure and relate to examining PD issues of AChE inhibition or the estimated 
exposure dose or concentration at the target site(s). This list is not meant to be 
exhaustive but rather provide examples of possible outputs. 

1.	 Area under the curve (AUC) for AChE inhibition which equals or exceeds a 
particular level. Following exposure to one or more N-methyl carbamates, 
the AUC can be calculated for AChE inhibition that exceeds a pre-
determined level, 10% AChE for example. 

2.	 Duration for AChE inhibition which equals or exceeds a particular level. 
Following exposure to one or more N-methyl carbamates, the duration for 
AChE inhibition that exceeds a pre-determined level, 10% AChE for 
example, can be estimated. 

3.	 AUC for AChE inhibition over a pre-determined duration of time, such as 1 
hour, 4 hours, or 24 hours. 

4. Peak level of AChE inhibition, particularly in red blood cell (RBC) or brain. 

5.	 AUC for concentration(s) of active AChE-inhibiting chemicals can be 
calculated. 

6.	 Peak concentration(s) of active AChE-inhibiting chemicals can be 
estimated in the target tissue(s). 

7.	 Time to ½ peak concentration(s) of active AChE-inhibiting chemicals can 
be estimated in the target tissue(s). 

Some of these example outputs are shown in the simulations below. 
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F. Illustrative simulations and example output 

Previous sections of this document have provided the biological basis and 
general structure of the PBPK models under development for the N-methyl 
carbamate pesticides. The following discussion describes simulations under six 
different example conditions which illustrate the PBPK/PD modeling approach 
and its usefulness. The first three simulations consider exposure to a single 
chemical at a ‘starting’ set of parameters followed by changes in AChE 
regeneration rate and GI absorption. Simulations 4 and 5 consider the impact of 
time to recovery and time of exposure on AChE for two exposures to a single 
chemical. Simulation 6 considers single exposure to two different chemicals. All 
the simulations presented here were performed using ERDEM as previously 
described. The two chemicals described below have toxicological and physical-
chemical properties consistent with one or more N-methyl carbamate pesticides. 
However, Chemical-1 and Chemical-2 do not represent actual pesticide 
chemicals and are used here only for illustrative purposes. Similarly the 
exposures simulated below do not represent actual or real exposure levels. The 
exposure amounts were selected arbitrarily for purposes of illustration only. 

1.	 Simulation 1: Single oral gavage exposure to Chemical-1 at 
starting parameter values 

Results from Simulation 1 are shown in Table 2 and Figures 4 and 
5. In this simulation, Chemical-1 was administered in silico at 10 mg/kg 
via gavage to male rats. 

Table 2. Example outputs for Chemical-1 in the brain and venous blood following oral 10 
mg/kg exposure by gavage* 

Example Outputs Brain Venous Blood 

Peak Inhibition (%) 36.02 32.58 

AUC at 1 Hr/24 Hr (mg-Hr/L) 19.1/34.8 2.1/3.5 

Duration of Inhibition above 10% 
(Hours) 

5.25 4.85 

Peak Concentration (mg/L) 34.05 6.39 

Time to ½ of Peak Concentration 
(Hours) 

0.3 0.15 

*The original values are kr=0.6, Stomach to Portal Blood Rate=13.65, Stomach to 
Intestine Rate=2.18, and Intestine to Portal Blood Rate=0.044; Male Sprague-Dawley 
rats, mean body weight 284g. 
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Figure 4. Comparison of simulation results for brain AChE inhibition in Chemical-1 
using starting parameter values with actual experimental data for a N-methyl carbamate 
pesticide. 
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Figure 5. Comparison of simulation output for exposure concentrations of the 
Chemical-1 with starting parameter values in the venous blood and brain. 
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2.	 Simulation 2: Single oral gavage exposure to Chemical-1 
reduction in AChE regeneration rate 

The impact of reducing enzyme inhibition regeneration rate from 
0.6 /hr to 0.3 /hr was tested in silico while maintaining the same GI 
absorption conditions (Table 3 and Figure 6). Compared to Table 2, the 
results of Simulation 2 show that reducing the regeneration resulted in an 
increase in peak inhibition and increase in duration of AChE inhibition over 
10%. It should be noted, that peak exposure concentrations in brain and 
venous blood remained unchanged. Relative to the starting values, peak 
inhibition, although greater, is reached less rapidly and the decline in 
inhibition is evidently more protracted. 

Table 3. Example outputs for Chemical-1 in the brain and venous blood following oral 
10mg/kg exposure by gavage with lower AChE regeneration rate* 

Example Outputs Brain Venous Blood 

Peak Inhibition (%) 43.43 39.27 

AUC at 1 Hr/24 Hr (mg-Hr/L) 19.1/34.8 2.1/3.5 

Duration of Inhibition above 10% (Hr) 8.65 8.15 

Peak Concentration (mg/L) 34.05 6.39 

Time to ½ of Peak Concentration (Hr) 0.3 0.15 

GI Absorption, Dose = 2.837 Amount (mg) Time to 99.9% (Hr) 

Total from Stomach to Portal Blood 2.45 0.45 

Total from Intestine to Portal Blood 0.36** > 60.0 
*The regeneration rate is kr=0.3. The original GI values are Stomach to Portal Blood

Rate=13.65, Stomach to Intestine Rate=2.18, and Intestine to Portal Blood Rate=0.044;

Male Sprague-Dawley rats, mean body weight 284 g.

**0.03 mg remained unabsorbed in the intestine after 60 hours.
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Experimental 

Figure 6. s for brain AChE inhibition in Chemical-1 
using a lower AChE regeneration rate with actual experimental data. 
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3.	 Simulation 3: Single oral gavage exposure to Chemical-1 
reduction in GI absorption parameters 

In Simulation 3, changes were made to the previously used GI 
absorption rates (Table 4 and Figure 7). These modifications included 
decreases to the stomach to portal blood rate from 13.65 to 4.55 and the 
stomach to intestine rate from 2.18 to 0.218, and an increase in the 
intestine to portal blood rate from 0.044 to 0.10. Realistically, these 
values for these parameters values will be dependent on the vehicle used 
to deliver the gavage dose, the physicochemical properties of the 
chemical of interest and dietary conditions during dosing. 

Under these modified absorption conditions, peak inhibition in brain 
(30.72%) and venous blood (27.39%) was reduced when compared with 
prior absorption and AChE regeneration rate conditions (Table 2) and 
under modified AChE regeneration rate conditions (Table 3). 

Table 4: Example outputs for Chemical-1 in the brain and venous blood following oral 
10mg/kg exposure by gavage reduced GI values and modified regeneration rate.* 

Example Outputs Brain Venous Blood 

Peak Inhibition (%) 30.72 27.39 

AUC at 1 Hr/24 Hr (mg-Hr/L) 11.50/23.1 1.28/2.32 

Duration of Inhibition above 10% (Hr) 7.65 7.05 

Peak Concentration (mg/L) 18.7 2.9 

Time to ½ of Peak Concentration (Hr) 0.45 0.2 

GI Absorption Dose=2.837 mg Amount (mg) Time to 99.9% (Hr) 

Total from Stomach to Portal Blood 1.92 0.7 

Total from Intestine to Portal Blood 0.92** 46 
*The regeneration rate is kr=0.3. The modified GI values are Stomach to Portal Blood

Rate=4.55, Stomach to Intestine Rate=0.218, and Intestine to Portal Blood Rate=0.1; 

Male Sprague-Dawley rats, mean body weight 284 g.

**There was 0.023 mg still unabsorbed in the intestine after 60 hours.
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Figure 7. Comparison of simulation results for blood AChE inhibition in Chemical-1 
using a lower AChE regeneration rate and reduced GI parameter values with actual 
experimental data. 
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4.	 Simulation 4 : Two oral gavage exposures to Chemical-1 
administered 1 hour apart 

Real world exposure conditions are very complicated–from different 
chemicals, routes, and media. PBPK/PD models as described here can 
simulate complicated exposure profiles.  For Simulation 4, two 10 mg/kg 
oral gavage exposures were administered in silico one hour apart (Table 
5; first value in each case is the value for only one exposure with second 
value being the value resulting from two exposures): 

Table 5. Example outputs for Chemical-1 in the brain and venous blood following oral 
(gavage) 10 mg/kg exposures at zero hour and one hour 

Example Outputs 
Brain Venous Blood 

Single/Dual-1hr Single/Dual-1hr 

Peak Inhibition (%) 36.02/56.26 32.58/52.74 

AUC at 1 Hr/24 Hr (mg-Hr/L) 
(top/bottom) 

19.1/34.8 
19.1/77.1 

2.1/3.5 
2.1/7.8 

Duration of Inhibition above 10% (Hours) 5.25/7.4 4.85/7.05 

Peak Concentration (mg/L) 34.05 
2nd Peak 44.44 

6.39 
2nd Peak 7.44 

Time to ½ of Peak Concentration (Hours) 0.3 
2nd Peak 0.5 

0.15 
2nd Peak 0.2 

The results in Table 5 show that when the second exposure is at 
one hour after the first one, the peak inhibition is increased by a little over 
50%, The AUC at 24 hr is more than doubled, the duration of the inhibition 
is above 10% for about 40% longer and the peak concentration is 
increased by 20-25 % with the second exposure. 
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5.	 Simulation 5 : Two oral gavage exposures to Chemical-1 
administered 4 hours apart 

Table 6 shows the modeled results if the dual exposures to 
Chemical-1 are simulated to be within four hours of one another. For this 
case the peak percent inhibition and concentrations are lower because 
(and more similar to those resulting from just one exposure) the chemical 
has been mostly cleared by the time the second exposure occurs. The 
duration of inhibition above 10% is increased by about two hours and the 
AUC at 24 hour is still close to the higher value recorded for the one hour 
difference in exposures. 

Table 6. Example outputs for Chemical-1 in the brain and venous blood following oral 
(gavage) 10 mg/kg exposures at zero hour and four hours 

Example Outputs 
Brain Venous Blood 

Single/Dual-4hr Single/Dual-4hr 

Peak Inhibition (%) 36.02/43.13 32.58/39.87 

AUC at 1 Hr/24 Hr (mg-Hr/L) 
(top/bottom) 

19.1/34.8 
19.1/70.6 

2.1/3.5 
2.1/7.1 

Duration of Inhibition above 10% (Hr) 5.25/9.55 4.85/9.15 

Peak Concentration (mg/L) 34.05 
2nd Peak 35.8 

6.39 
2nd Peak 6.58 

Time to ½ of Peak Concentration (Hr) 0.3 
2nd Peak 0.35 

0.15 
2nd Peak 0.15 
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Figure 8. Simulation results for brain AChE inhibition in Chemical-1 where in silico 
exposures occurred at hour 0 and 4. (Points represent actual experiment data from a N-
methyl carbamate exposed only at hour 0). 
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6.	 Simulation 6 : One oral gavage exposures to Chemical-1 and 
one oral gavage exposure to Chemical-2 4 hours apart 

Simulation 6 illustrates the use of the model to examine the impact 
of exposure to two chemicals. Here the exposure to two different N-methyl 
carbamates was simulated within four hours of each other. The second 
chemical was set to have slower elimination in the liver by metabolic 
clearance. The maximum rate for this reaction was set to be 1/10th of the 
rate for the first chemical. Table 7 shows a summary of the results: 

Table 7. Example outputs for Chemical-1 and Chemical-2, exposed at time zero, and a 
similar chemical, 1/10th of the Vmax, exposed at four hours, in the brain and venous 
blood 

Example Outputs Brain Venous Blood 

Peak Inhibition (%) 36.02 
2nd Peak 54.79 

32.58 
2nd Peak 50.80 

AUC at 1 Hr/24 Hr (mg-Hr/L),Chem 1 
AUC at 5 Hr/28 Hr (mg-Hr/L),Chem 2 

19.1/34.8 
27.78/223.5 

2.1/3.5 
3.21/22.50 

Duration of Inhibition above 10% (Hr) 25.6 24.75 

Peak Concentration (mg/L) 
34.05 

2nd Chem Peak 
40.2 

6.39 
2nd Chem Peak 7.07 

Time to ½ of Peak Concentration (Hr) 0.3 
2nd Chem 1.25 

0.15 
2nd Chem 0.2 

As shown in Table 7, the peak inhibition increases by 50% following 
exposure to Chemical-2. The duration increases by a factor of almost 
three compared to a single chemical exposure (Table 2). The AUC 24 
hours after the exposure increased by more than a factor of 6 from 
Chemical 1 to Chemical 2. Thus the critical factors with the chemical with 
the lower Vmax is the longer duration of inhibition above 10% and the 
significant increase in the AUC 24 hours after the exposure. Figure 9 
shows the results on inhibition in the brain. 
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Figure 9. Simulation results for brain AChE inhibition where in silico exposure to 
Chemical-1 occurred at hour 0 and in silico exposure to Chemical-2 occurred at hour 4. 
(Points represent actual experiment data from a N-methyl carbamate exposed only at 
hour 0). 
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The illustrations that have been shown here demonstrate how the 
model can be used to estimate dose under a variety of conditions. 
Different exposure scenarios and different biochemical and physiologic 
conditions can all be tested. Conventional approaches do not afford the 
advantages of testing these various scenarios. Further the model can be 
used to test the importance of various governing factors (physiological, 
biochemical, thermodynamic, exposure inputs) on the ultimate relevant 
dose in the tissue. With the model the internal dose proximate to the 
impacted organ can be estimated. Models based on sound and rational 
science and which are well tested are very valuable and powerful tools for 
elucidating the impact of many factors upon the toxicologically relevant 
dose. 

G.	 Experimental data needs for a PBPK/PD model for the N-methyl 
carbamates 

Typical toxicology data collected for purposes of pesticide registration 
(40CFR part 158) do not include the appropriate metabolism and PK data needed 
to support a PBPK/PD model. Generally, metabolism studies submitted for 
pesticide registration include a metabolic pathway describing the parent chemical, 
major metabolites, and excretion products. However, these studies do not 
measure concentrations of parent compound and/or active metabolites in target 
tissue or blood but instead generally report total radioactivity in various tissues. 
Typical toxicology databases submitted for pesticide registration also do not 
include PD studies such as time to peak effect or time to recovery. With the 
exception of some time to recovery AChe data for a few N-methyl carbamates, 
there is very little appropriate metabolism or toxicology data available from 
pesticide registration databases for developing PBPK/PD models. EPA is actively 
searching the scientific literature for data and information relevant to the PBPK/PD 
modeling case study. 

Development of PBPK/PD models is most efficient when the model 
developer and laboratory scientist work collaboratively and iteratively together. By 
first developing a preliminary model using the best available information, the 
modeler can communicate research needs to laboratory scientists very early in 
the model development process. Laboratory experiments can then be designed 
to directly address to the data needs. Following consultation with EPA laboratory 
scientists, consideration of available metabolism and mechanistic data, and 
consideration of the existing PBPK/PD models for several AChE-inhibiting OPs 
(Gearhart et al., 1990; Gearhart et al., 1994; Timchalk et al., 2002), it has been 
possible to develop preliminary models before conducting laboratory studies. The 
structures for the two models under development were provided in Figures 2 and 
3. It is also notable that because of the data intensive nature of PBPK/PD 
models, for purposes of cumulative risk assessment, it is prudent to concentrate 
resources and efforts on those pesticides and exposure scenarios that are 
expected to contribute to the cumulative risk for a particular common mechanism 
group. 
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The types of data described below include both in vivo and in vitro 
experiments. For some types of information such as partition coefficients, where 
extrapolation from in vitro to the whole animal is not expected to significantly 
impact model uncertainty, the use of in vitro techniques offer an opportunity to 
conserve resources and to complement more resource intensive in vivo 
experiments. 

The law of parsimony encourages development of the simplest model that 
is powerful enough to accurately predict the biological or toxicological effect of 
interest. Models with structures that are more complicated than necessary are 
difficult to interpret, tend to be over-parameterized which leads to problems with 
parameter identifiability, and may suggest more supporting experimental work 
than is really needed. The following is a discussion of what is considered to be 
the minimum information necessary to develop PBPK/PD models for individual N-
methyl carbamates. In order to establish a linkage between PK with the AChE 
inhibition and subsequent recovery, it is suggested that measurements of AChE in 
RBC and brain are also performed with the in vivo PK studies described below. 
Additional information related to interindividual variability is also discussed below. 
The main focus of the following discussion, particularly the in vivo experiments, is 
on development of PBPK/PD models for rodents. The issue of scale-up and 
extrapolation of the rodent model to humans is considered separately (Section 
III.I). 

1. Types of data needed for PBPK/PD model development 

‘	 Chemicals of interest.  The PBPK/PD models for individual N-methyl 
carbamates will be developed to track parent compounds and any 
metabolites capable of AChE inhibition. There will be no need to 
explicitly track inactive species and, in the interests of model 
parsimony, it is preferable not to do so. 

‘	 In vivo AChE inhibition. Describing the linkage between PK and 
AChE inhibition, is an critical aspect of the PBPK/PD modeling 
effort. Measurements of AChE inhibition, particularly RBC and 
brain, during the in vivo PK studies discussed below could be used 
to establish this linkage. Because of the rapid recovery of the N-
methyl carbamates, the method used to measure AChE is an 
important consideration.  It is suggested that in vivo measurements 
of AChE are performed using a technique, such as the radiometric 
method (Johnson and Russell, 1975; Hunter and Padilla, 1999; 
Winteringham and Fowler, 1966), that is not impacted by the rapid 
reversibility of the N-methyl carbamates. 

‘	 In vitro kinetics of AChE binding. The reaction of an AChE-inhibiting 
chemical species (whether parent compound or metabolite) with 
AChE is described by a 2nd-order rate constant. The dissociation of 
the inhibitor-AChE complex is described by a 1st-order rate constant. 
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These parameters can be estimated using in vitro methods and 
should be obtained for blood (particularly RBC) and brain. 
Estimation only of the equilibrium dissociation constant, which is the 
ratio of the 2nd- and 1st-order rate constants, rather than the 2nd and 
1st order constants themselves, would be acceptable for the 
purposes of developing the PBPK models. These data will be 
needed for all chemical species that contribute significantly to AChE 
inhibition. 

‘	 Partition coefficients.  Computational algorithms are available for 
prediction of partition coefficients (Poulin and Thiel, 2001; Poulin 
and Krishnan, 1995; DeJongh et al., 1997). These algorithms 
provide an opportunity to develop PBPK/PD models without actually 
measuring partition coefficients in the laboratory. It may be prudent, 
however, to obtain laboratory measurements of a subset of the 
algorithmically-predicted values in order to determine the reliability 
of computationally derived partition coefficients. This determination 
will be particularly important if future sensitivity analyses indicate 
that one or more of these coefficients are important determinants in 
estimating exposure concentration at the site of action. 

It is expected that blood:tissue partition coefficients will be required 
for liver, kidney, fat, slowly perfused (i.e., muscle), and brain. 
Blood:air partition coefficients will be needed for volatile parent 
compounds or metabolites. The skin:blood partition coefficient will 
be needed if dermal exposure is evaluated. 

‘	 In vitro studies for metabolic clearance.  The quantitatively most 
important site of metabolism of N-methyl carbamates is expected to 
be the liver. Liver homogenates or microsomes can be used to 
estimate the Michaelis-Menten parameters of metabolism (Vmax: 
maximum rate of metabolism, Km: concentration at which the 
enzyme is half-saturated). Sufficient attention to the design of these 
experiments should enable the identification of multiple metabolic 
pathways characterized by different Vmax and Km values. As 
mentioned previously, development of PBPK/PD models is most 
efficient when model developers work collaboratively with laboratory 
scientists. If a first-generation PBPK/PD model that describes only 
hepatic clearance is not able to predict PK data, then screening of 
other tissues such as blood and kidney as potential sites of 
metabolic clearance may need to be considered. 

The extrapolation from in vitro to in vivo can be a source of 
uncertainty; some limited data on compound metabolism may need 
to be collected in vivo to evaluate the suitability of the in vitro data. 
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‘ In vivo studies for metabolic parameters: 

a.	 Intravenous studies: Analytical measurement of the time-
course of the amount of parent N-methyl carbamate and 
AChE-active metabolites in the target tissue, site(s) of 
storage (if appropriate) and metabolism are suggested in 
addition to measurements of AChE inhibition. These 
datasets provide an opportunity to estimate metabolic 
parameters (Vmax and Km) by curve fitting without potential 
confounding by incorrect specification of rates of absorption 
from the GI tract. As noted previously, even if in vitro 
methods are used as the primary means of obtaining data on 
Vmax and Km, some in vivo data as described here should 
be obtained to evaluate the in vitro to in vivo extrapolation. 

b.	 Oral absorption.  Absorption from the GI tract is a major route 
of exposure of N-methyl carbamates into the body particularly 
through the diet. However, estimation of oral absorption 
parameters is best done by fitting the model to PK data where 
all model parameters, except for the oral absorption 
parameters, have already been set. 

A blood time course dataset is a good basis for estimation of 
oral absorption parameters. The specific oral absorption 
parameters to be identified will depend on the types of data 
available. For example, oral dosing can be administered in 
various ways such as corn oil gavage, water gavage, or 
feeding. Analytical measurement of the time course of the 
amount of parent N-methyl carbamate and AChE-active 
metabolites in blood is the minimum requirement for 
estimation of the oral absorption parameters. In addition, 
measurements in the target tissue, site(s) of storage (if 
appropriate), and metabolism, in addition to measurements of 
AChE inhibition, are suggested. (These latter measurements 
would be useful when considering the reliability of model 
predictions but they are not essential for estimation of oral 
absorption parameters during model development.) 

‘	 Interaction experiments.  When exposure occurs to two or more 
members of the cumulative assessment group (CAG), interactions 
between compounds may occur that affect PK behaviors and the 
associated degree of AChE inhibition. The expected sites of 
interaction include CYP450 and carboxyl esterases that are sites of 
N-methyl carbamate binding and metabolism. Development of a 
single PBPK/PD model for the entire CAG will require that these 
interactions be described explicitly in the equations of the model. 
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The initial approach to the development of this model will be to 
assume that the interactions are competitive. The mathematical 
description of competitive interactions is straightforward. 
Fortunately, the data obtained during development of the PBPK/PD 
models for the individual members of the CAG can also be used to 
parameterize competitive interaction terms for the PBPK/PD model 
for the entire CAG. Similarly, the individually measured binding and 
dissociation parameters for AChE (see In vitro kinetics of AChE 
binding above) should be sufficient to characterize the overall level 
of AChE inhibition for a multi-compound model. The studies 
conducted in support of model development for the individual 
compounds will thus provide much if not all of the data needed to 
characterize these interaction terms. 

An in vivo multi-chemical PK and AChE inhibition study will be 
desirable to establish the reliability of the PBPK/PD model for at 
least a subset of the members of the CAG (particularly for those 
pesticides with the highest levels of human exposure). The 
preliminary PBPK/PD model for CAG as a whole can be used to 
design this study to ensure that dose sampling time points selection 
is as close to optimal as is possible. Alternatively, and in lieu of this 
in vivo study, it may be possible to design in vitro pharmacokinetic 
and AChE inhibition time course studies that can provide useful 
tests of the reliability of the CAG PBPK/PD model. 

‘	 Other additional information. As noted above, development of a 
PBPK/PD model is a process that iterates between model 
development at the computer terminal and targeted laboratory 
experiments. The data collection needs identified above should 
provide robust PBPK/PD models sufficient to the task of predicting 
AChE inhibition for various exposure scenarios. Some kinds of 
additional data, however, may serve to increase confidence in the 
model to an even greater degree and to provide additional 
capabilities relevant to risk assessment. 

Data on compound elimination in urine, feces, and exhaled breath 
would support the model development, and test the accuracy of the 
assumptions concerning mass balance. Demonstration that the 
PBPK model equations accurately simulates the results of a mass 
balance study increases the level of confidence in the model 
structure, and in the use of its predictive capability for risk 
assessment. 

Data on interindividual variability in PBPK/PD model parameters, in 
PK behavior and in AChE inhibition would support a “Monte Carlo” 
analysis. In a Monte Carlo analysis, PBPK models parameter 
values are described by statistical distributions rather than by single, 
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fixed data points. At each run of the model, random samples are 
taken from the distributions to create a new set of parameter values. 
Each run of the model can thus be thought of as representing a 
different individual in a population (USEPA 1996 and 1997). Thus, a 
Monte Carlo analysis supports characterization of variability and 
uncertainty in the estimates of AChE inhibition based upon the 
uncertainty and variability in the parameters. A Monte Carlo 
analysis would first be performed on the PBPK model for rodents. 
Reparameterization of the PBPK model to humans would require 
consideration of the issues addressed in the discussion on 
interspecies extrapolation (see Section III.I) with additional concern 
for how parameter variability scales between species. The Monte 
Carlo model would provide a capability for prediction of population 
variability in AChE inhibition This capability would help address the 
uncertainty associated with interindividual variability. 

PBPK/PD models are capable of incorporating specific information 
relating to sex, age, and/or other factors that impact the manner in 
which individuals are affected by chemical exposures. The datasets 
used to support development of a PBPK/PD model are typically 
collected in a sex-specific manner. Some sex-specific differences in 
parameter values are well known, for example the differences in 
hepatic CYP450 activities, the model has an associated “sex” which 
is defined by the supporting datasets.  Sex-specific differences in 
key parameter values, such as rates of bioactivation or 
detoxification, could be associated with measurable differences in 
degrees of AChE inhibition for the same exposure. Once the initial 
PBPK/PD model is developed for males or females, a sensitivity 
analysis could be conducted to determine the degree to which 
model-predicted AChE inhibition is sensitive to sex-related changes 
in key parameter values. This sensitivity analysis would provide a 
good indication of whether or not collection of additional data in the 
other sex is necessary. 

PBPK/PD models are usually developed using datasets from adult 
animals. Information related to identification and description of 
sensitive life stage(s), such as maturation profiles for critical 
metabolic pathways, would also be helpful in developing the 
PBPK/PD models. It is possible to incorporate into these models 
descriptions of how parameter values change with age. This 
information allows the model to describe how PK behaviors change 
with age, as with the transition from childhood to adulthood. These 
capabilities depend on the availability of adequate supporting 
datasets, such as growth curves for the major tissue groups in the 
body, and age-dependence in the activities of enzymes that activate 
or clear the chemicals of interest. In the absence of such 
information, the PBPK/PD model is typically developed for the adult 
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and health-protective, default approaches are invoked to account for 
potential age-dependent pharmacokinetic behaviors contribute to 
the age-dependence of risk. 

2. Uncertainty associated with availability of appropriate data 

The Agency has not yet determined which method or methods that 
will be used to develop the cumulative risk assessment for the N-methyl 
carbamates. However, the availability of appropriate data is expected to 
impact the level of refinements and type of method(s) used. At this time, it 
is unknown whether or not sufficient data will be available to the Agency for 
model development or for evaluating the reliability of the PBPK/PD models 
for the N-methyl carbamate pesticides in a timely manner for the expected 
release of the preliminary cumulative risk assessment in 2005. However, 
one of the goals of the current research effort and case study is to consider 
the degree to which completeness and availability of appropriate PK data 
impacts model uncertainty when developing PBPK/PD models for use in 
regulatory settings. As part of the case study, in the future, the Agency will 
also carefully evaluate the application of uncertainty, extrapolation, and 
safety factors, particularly the FQPA 10x factor for infants and children, 
when using PBPK/PD models to estimate cumulative risk. The Agency 
anticipates further discussion and consideration of overall uncertainty 
related to data availability in the future as work on the case study 
continues. 

H. Model Evaluation and Quality Control. 

An essential part of the modeling process is model evaluation: the process 
of determining the degree to which a model satisfies the needs that led to the 
model’s creation. Model development is an iterative process in which model 
creation (i.e., when important aspects of biology are captured in mathematical and 
computer models) alternates with model evaluation (i.e., when the model is tested 
and challenged with data and analysis). Any failures in the evaluation phase are 
used to identify inadequate approximations and faulty biological assumptions, 
which can then be corrected in a new model creation phase. When it comes time 
to use the model, the process must end with an evaluation step. The following 
process is a sequence of steps whose application is intended to increase 
confidence that the PBPK/PD models are reliable tools for assessing risk. In 
many ways, the sequence parallels the process of model creation. This approach 
has been treated more generally by Clark, et al. (2003, in prep). 

1. Model Purpose 

The specific use for the model must be explicitly defined before an 
evaluation of model suitability can be begun. The purpose of the model 
constrains its structure and determines the details of the rest of its 
evaluation. Some examples of questions that must be answered here are: 
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Does the model need to predict AChE inhibition or parent and metabolite 
concentrations? In which tissues must the model predict these values? 
What metrics, such as area under the curve, peak value, or area under the 
curve above a threshold value, must be computed? What sorts of 
exposure inputs are required? How precisely must the model predict the 
different outputs? 

2. Biological Characterization and Model Structure 

Although the quantitative machinery gets much of the attention, in 
fact a PBPK/PD model is initially a narrative statement of biological 
descriptions and hypotheses. This narrative must include the general 
biological features that affect concentrations of parent chemicals and the 
relevant metabolites, and also sources and the nature of intra- and inter-
individual variability. PBPK/PD models include a number of approximations 
and assumptions that should be made explicit. Some aspects of model 
structure, such as the treatment of tissues as well-mixed compartments, 
concentrating all or most of metabolism in one or two tissues, and the 
lumping of compartments with similar characteristics, are common to most 
PBPK/PD models. Other aspects of model structure are specific to the 
chemicals being considered, such as simplifications of metabolic pathways, 
and the nature of protein binding. Still others are specific for particular 
endpoints, like the description of AChE synthesis, degradation, and 
inhibition. 

This largely qualitative description of the biological and toxicological 
profile(s) for the chemical(s) of interest should be reviewed in the context of 
the relevant scientific literature. In cases where the literature is unclear 
about the details needed for modeling, and/or for which the literature 
supports more than one descriptions of a particular feature, it should be 
possible, through modeling those alternatives, to quantify the degree to 
which the ambiguity matters for the particular endpoints of concern. 

3. Mathematical Descriptions 

It is convenient when assessing a PBPK/PD model to abstract its 
formal mathematical description from its implementation in a particular 
programming language. Much of that description is well-established 
(Ramsey and Andersen, 1984): the mathematical forms for perfusion­
limited and diffusion-limited compartments are well-known, for instance. 
Other aspects are not so well-established, such as protein binding, 
absorption from the GI tract, dermal absorption, and submodels for AChE 
inhibition and regeneration. Some mathematical descriptions of biological 
features, such as receptor binding or protein binding more generally, may 
carry with them assumptions about how rapidly concentrations of ligand, 
receptor, and the ligand-receptor complex come to steady state relative to 
the other temporal changes in the system. For completeness, it is 
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desirable that the mathematical description includes the nature of inter- and 
intra-individual variability, including measurement error. Details of the 
probability model evaluated here, such as particular probability distributions 
used will often depend upon the context within which the model is used, 
such as experimental design or the risk assessment scenario, but this part 
of the model description is essential for proper statistical treatment of 
parameter estimation. 

4. Computer Implementation 

PBPK/PD models are typically written in a specialized high-level 
language, which is itself a complex computer program, very often a 
proprietary language whose source code is usually hidden from the 
ordinary user. Thus, the reliability of the software in which the model is 
written although an important concern, is one that will have been 
addressed in a larger context. Thus, the primary concern in this phase of 
model evaluation is that of the code for the model itself. 

An advantage of analyzing PBPK/PD models first into a 
mathematical description prior to a computer implementation of that 
description is the opportunity to evaluate the mathematical description and 
computer implementation separately. Evaluation at this step involves 
checking of computer code against mathematical description and also 
checking that features of the language, such as integrator options, are 
used correctly (e.g., stiff methods used for systems that are likely to be 
stiff, etc.) 

Details of the evaluation depends upon language. For languages 
such as MCSim and ACSL, which are essentially algebraic languages, the 
form of the model description follows closely that of the mathematical 
description. For many PBPK/PD models, like that shown in Figure 3, 
details of statement syntax and the use of the proper variables in a model 
that may have hundreds of similar-looking variable names becomes a 
critical and difficult part of the evaluation. ERDEM, on the other hand, is 
essentially a pre-coded PBPK model for a large number of potential 
compartments and chemicals. The specific implementation for a particular 
set of chemicals is based on limiting that general model by the use of 
switches and implementation-specific parameter values. For this sort of 
model, review consists of making sure the switch settings and parameter 
values correspond to the intended model. Again, the large number of 
parameters necessitated by a model for multiple exposures makes this a 
tedious part of the model evaluation; though a good user interface can 
facilitate the review significantly by making it easier to group related 
variables together. 
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A valuable approach for complex models is separate, independent 
implementation of the same mathematical description in separate 
languages. Greater confidence in the software implementation is achieved 
when two independent implementations of a model give numerically similar 
results to the same inputs. Two models for the N-methyl carbamates are 
being developed, in ERDEM and in MCSim. This allows the software 
implementations to be directly tested through comparisons of their 
respective outputs given the same input. In addition, dual model 
implementation provides the opportunity to take advantage of the unique 
features of each language, such as the advanced statistical features of 
MCSim and the ability for rapid prototyping of alternative models in 
ERDEM. 

5. Parameter Analysis and Quality of Model Fit 

Model parameters can be grouped into several categories: 
physiological parameters such as tissue volumes, blood flows, AChE 
synthesis and degradation rates; chemical-specific parameters such as 
partition coefficients, metabolic rate constants, coefficients for protein 
binding, coefficients for AChE inhibition; and parameters for determining 
the stochastic behavior of model, such as inter-individual variances of the 
true parameter values. Their values are determined in different ways. 
Physiological parameters are usually determined by combining body weight 
with tabulated relationships between body weight and the other 
physiological parameters (e.g., Brown, et al., 1997). Chemical-specific 
parameters may be estimated by fitting the model to data, as is often the 
case with metabolic parameters. In some cases, algorithms exist for 
estimating them from other chemical-specific characteristics, such as 
approaches for estimating partition coefficients from octanol:water partition 
coefficients (e.g., Poulin and Krishnan, 1995; Poulin and Thiel, 2001). 
Parameters for the stochastic characteristics of the model may be 
estimated from experimental data by fitting the model directly. However, 
especially for human stochastic parameters used for predicting human 
variability, these parameters may be inferred from studies of the degree to 
which people vary in, for example, relevant biochemical parameters such 
as enzyme activities. 

The first step in evaluating the quality of the parameters used in the 
model is to affirm the correctness and relevance of particular values by 
reference to literature values. Once this is completed, it is important to 
determine the critical parameters important for model outputs relevant to 
the risk assessment as well as for data sets used to evaluate model 
reliability. This determination helps identify parameters whose values are 
unreliable, because they have not been “tested” in the comparisons 
between model predictions and new datasets, and identifies parameters 
whose values are particularly important, and thus warrant closer 
examination. Engineering tools, such as sensitivity analysis, and tools from 
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statistical experimental design for non-linear model parameter estimation, 
are useful for identifying the parameters that are most critical for 
determining the values of model outputs. 

Also important is the ability of the model to predict results in data 
sets that have not been used to estimate parameters. The closer the 
experimental designs of such datasets are to the regimen in which the 
model will actually be used, the more reliable the results of such evaluation 
will be for predicting the utility of the model. It is important to note that strict 
goodness-of-fit testing is not necessarily the right approach, here. The null 
hypothesis on which goodness-of-fit testing is based, that the model under 
consideration is the true model that generated the particular experimental 
data set, is clearly false a priori. Failure to reject a goodness-of-fit test 
means no more than that the experimental design was inadequate to 
detect the deviation of the PBPK/PD model from the truth, but does not 
quantify how close the model is to the true model. Instead, the degree to 
which the model fails to predict experimental results, in terms of readily 
interpretable metrics such as percent error of prediction, with a measure of 
its uncertainty, is a more useful measure. It is preferred to consider the 
appropriate the level of precision at the beginning of the modeling effort, 
perhaps during Stage 1 (definition of model purpose). 

I. Model scale-up and extrapolation from rodents to humans. 

Use of laboratory animals to study N-methyl carbamate toxicology is 
justified by the assumption that the data so obtained are relevant to humans. 
With respect to PBPK/PD modeling, this means that we assume that the model 
structure that describes N-methyl carbamate PK and AChE inhibition in rats is 
also appropriate for humans. This assumption is consistent with data on the 
common role of AChE in the rodent and human nervous systems as well as with 
other data on N-methyl carbamates. The problem of scale-up of the model from 
rats to humans thus becomes one of identifying appropriate human values for the 
model parameters. The scaling behaviors of all of the parameters of the rodent 
model should be considered in this process.  Identification of a full set of human 
parameter values allows the model to be used for prediction of AChE inhibition in 
people. In practice, most if not all of the data available to support model 
development will be obtained from rodents and rodent tissues. It is a certainty 
that the database of human information for PBPK/PD model development will be 
minimal compared to that available for rats. Scaling and extrapolating the 
PBPK/PD model from rats to people will thus involve a number of steps: 

1.	 Use of human data when available and if appropriate. For example, data 
on human physiological values such as tissue volumes and blood flows can 
be used directly in the model. Chemical-specific data that can be obtained 
from in vitro studies from human tissues, such as partition coefficients, 
rates of metabolism, and interactions with AChE, would be valuable. The 
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ability to obtain such in vitro data depends on the availability of appropriate 
human tissue samples, such as hepatic microsomes and blood. 

2.	 Identification of any relevant and appropriate non-human primate data and 
evaluation of its possible use as surrogate for human data. 

3.	 In the absence of relevant human information, allometric scaling of the 
rodent parameter are values. This approach defines the parameter values 
as functions of body weight. For example, the breathing rate is scaled from 
rodents to humans as a fractional power (usually 0.75) of body weight 
(BW). Tissue volumes, on the other hand, are usually scaled as BW1.0. 

4.	 Use of rodent parameter values directly in the human model. In the 
absence of relevant human data and a lack of information on how to 
allometrically scale a parameter value, the most judicious approach may be 
to use the rodent value directly, i.e., without change, in the human model. 
Oral uptake absorption rate constants, for example, may be treated in this 
manner. As with all approaches to scale-up, the contribution to overall 
model uncertainty of this approach should be considered. 

At present time, the PBPK/PD models under development for the N-methyl 
carbamate pesticides have not been scaled from rodents to humans. However, it 
is expected that when faced with uncertainty about the appropriate scale-up for 
specific parameters, choices can often be identified that are health protective. For 
example, if the appropriate scale-up of oral absorption rate constants is not clear, 
then the option that maximizes the rate of absorption in the human model could 
be used, since this approach is expected to maximize the inhibition of AChE 
predicted by the human model. This approach will cause the human model to 
over predict human health risk in the face of uncertainty about parameter scale-
up. As the case study develops further, the Agency will provide the sources of 
data and relevant scaling of all parameters so as to make the PBPK/PD modeling 
effort transparent and open for scientific evaluation. 

The approach to scale-up described here will produce a human version of 
the PBPK/PD model. Expert judgment will be required to evaluate the degree of 
uncertainty associated with the scale-up with specific attention paid to the 
question of how the uncertainties associated with the human PBPK/PD model 
compare to the uncertainties of an empirical modeling approach. 

IV. SUMMARY 

The current document outlines the on-going work by EPA to develop a strategy for 
performing cumulative risk using PBPK/PD modeling. A case study with AChE-inhibiting 
N-methyl carbamates pesticides is under development. EPA is proposing to perform a 
dual modeling effort in this case study. By developing models in two different 
programming languages the advantages of each platform can be put to use. The 
generation of two models is also expected to provide an additional level of quality control 
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for error detection and correction. Incorporating PK and mechanistic data into risk 
assessments is expected to improve the biological and scientific basis for the 
assessments and is thus expected to improve regulatory decisions. Although using 
PBPK/PD models is likely to reduce the overall uncertainty for a particular risk 
assessment, it is not intended to remove all uncertainty and may actually highlight areas 
of uncertainty that were not previously considered or evaluated. The key consideration 
in evaluating the utility of PBPK/PD models is not that the model be correct in any 
absolute sense but rather that it be arguably better, i.e., less uncertain, than an 
alternative empirical approach or use of default assumptions. In the future, EPA will 
need to critically evaluate the balance between model uncertainty particularly when 
associated with incomplete PK and/or mechanistic data sets with the reduction in overall 
risk assessment uncertainty associated with utilizing these types of models and 
information. As appropriate PK data become available, the Agency will also address 
some technical issues in the case study such as parameter estimation and sensitivity 
analysis not considered in depth in the current document. Since the passage of FQPA 
(1996), the Agency has taken a step-wise approach to developing its cumulative risk 
assessment methodologies and risk assessments. The current document is a 
continuation of this step-wise approach. Further scientific review is anticipated in the 
future as the case study and PBPK/PD strategy are developed. 
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